Selasa, Maret 11, 2014

international maritime law/Hukum internation Kelautan



Hukum Internasional Kelautan

•Hukum laut mulai dikenal semenjak laut dimanfaatkan untuk kepentingan pelayaran, perdagangan, dan sebagai sumber kehidupan seperti penangkapan ikan

Sejarah Perkembangan Hukum Laut Sampai Abad ke-20

•Hukum laut Rhodia di laut tengah (abad ke-7)
•Koleksi hukum maritim yang dinamakan Consolato del Mare (konsulat dari lautan), thn 1494
•Himpunan Rolles d’ oleron  aturan pokok lautan untuk daerah Atlantik
•Sea Code of Wisby  himpunan hukum laut penting di Eropa Utara
•Hukum laut “Amanna Gappa”  himpunan hukum pelayaran dan perdagangan di Indonesia yang berasal dari Bugis, Sulawesi Selatan


•Pada abad 16 dan 17 negara-negara maritim di Eropa merebutkan untuk menguasai lautan.
•Spanyol dan Portugis yang menguasai lautan berdasarkan perjanjian Tordesillas thn 1494, ternyata memperoleh tantangan dari Inggris (di bawah Elizabeth 1) dan Belanda.
•Konferensi Internasional utama yang membahas masalah laut teritorial ialah “codification conference” (13 Maret – 12 April 1930) di Den Haag, di bawah naungan Liga Bangsa Bangsa, dan dihadiri delegasi dari 47 negara.
•Konferensi ini tidak mencapai kata sepakat tentang batas luar dari laut teritorial dan hak menangkap ikan dari negara-negara pantai pada zona tambahan. Ada yang menginginkan lebar laut teritorial 3 mil (20 negara), 6 mil (12 negara), dan 4 mil.

Konferensi Hukum Laut PBB I (1958) dan PBB II (1960)

•Resolusi Majelis Umum PBB tgl 21 Feb 1957 menyetujui untuk mengadakan konferensi Internasional tentang hukum laut pada bulan Maret 1958.
•Konferensi ini akhirnya diadakan pada tgl 24 Feb – 27 April 1958 yang dihadiri oleh 700 delegasi dari 86 negara, yang dikenal dengan UNCLOS I (United Nations Convention on The Law of The Sea) atau konvensi Perserikatan Bangsa-Bangsa tentang hukum laut.


4 buah konvensi dari UNCLOS I
1.Konvensi tentang laut teritorial dan jalur tambahan (convention on the territorial sea and contiguous zone)  belum ada kesepakatan dan diusulkan dilanjutkan di UNCLOS II
2.Konvensi tentang laut lepas (convention on the high seas)
a.Kebebasan pelayaran
b.Kebebasan menangkap ikan
c.Kebebasan meletakkan kabel di bawah laut dan pipa-pipa
d.Kebebasan terbang di atas laut lepas

Konvensi ini telah disetujui.
3. Konvensi tentang perikanan dan perlindungan sumber-sumber hayati di laut lepas (convention on fishing and conservation of the living resources of the high seas)
4. Konvensi tentang landas kontinen (convention on continental shelf

•Pada 17 Maret – 26 April 1960  UNCLOS II, membicarakan tentang lebar laut teritorial dan zona tambahan perikanan, namun masih mengalami kegagalan untuk mencapai kesepakatan, sehingga perlu diadakan konferensi lagi.

Konferensi Hukum Laut PBB III

•Konvensi hukum laut 1982 merupakan puncak karya dari PBB tentang hukum laut, yang disetujui di Montego Bay, Jamaica (10 Des 1982), ditandatangani oleh 119 negara.
•Ada 15 negara yang memiliki ZEE besar:

Amerika Serikat, Australia, Indonesia, New Zealand, Kanada, Uni Soviet, Jepang, Brazil, Mexico, Chili, Norwegia, India, Filipina, Portugal, dan Republik Malagasi.

Dalam dekade abad ke-20 telah 4 kali diadakan usaha untuk memperoleh suatu himpunan tentang hukum laut, diantaranya adalah:
1.Konferensi kodifikasi Den Haag (1930), di bawah naungan Liga Bangsa-Bangsa
2.Konferensi PBB tentang hukum laut I (1958)  UNCLOS I
3.Konferensi PBB tentang hukum laut II (1960)  UNCLOS II
4.Konferensi PBB tentang hukum laut III (1982)  UNCLOS III

Kepentingan dunia atas hukum laut telah mencapai puncaknya pada abad ke-20. Faktor-faktor yang mempengaruhi negara-negara di dunia membutuhkan pengaturan tatanan hukum laut yang lebih sempurna adalah:
•Modernisasi dalam segala bidang kehidupan
•Tersedianya kapal-kapal yang lebih cepat
•Bertambah pesatnya perdagangan dunia
•Bertambah canggihnya komunikasi internasional
•Pertambahan penduduk dunia yang membawa konsekuensi bertambahnya perhatian pada usaha penangkapan ikan

Definisi Penting

•Laut teritorial Indonesia adalah jalur laut selebar 12 mil laut yang diukur dari garis pangkal kepulauan Indonesia
•Perairan Indonesia adalah laut teritorial Indonesia beserta perairan kepulauan dan perairan pedalamannya.
•Zona Ekonomi Eksklusif Indonesia (ZEEI) adalah jalur di luar dan berbatasan dengan laut teritorial Indonesia sebagaimana ditetapkan berdasarkan undang-undang yang berlaku tentang perairan Indonesia yang meliputi dasar laut, tanah dibawahnya, dan air di atasnya dengan batas terluar 200 mil laut yang diukur dari garis pangkal laut teritorial Indonesia.
•Laut lepas adalah bagian dari laut yang tidak termasuk dalam ZEEI, laut teritorial Indonesia, perairan kepulauan Indonesia, dan perairan pedalaman Indonesia.
•Landas kontinen Indonesia adalah dasar laut dan tanah di bawahnya, di luar perairan wilayah Republik Indonesia sampai kedalaman 200 meter atau lebih, dimana masih mungkin diselenggarakan eksploitasi kekayaan alam.

Minggu, Maret 09, 2014

JDR to manufacture electro hydraulic umbilical for the Bayu-Undan Field

29 January 2014:   JDR Cable Systems Limited has won a contract for the manufacture of subsea production umbilicals from ConocoPhillips – an American multinational energy corporation head-quartered in Houston, Texas. The umbilicals will be deployed in Phase 3 of the Bayu-Udan Field development in the Joint Petroleum Development Area (JPDA) of the Timor Sea.
JDR’s scope of work includes delivery of three sections of electro hydraulic umbilicals, with a total length of 29km. The umbilicals will be used for control and chemical distribution to two new subsea production wells. JDR will also provide the subsea distribution unit at the base of the dynamic riser umbilical, which will connect the two infield umbilicals. In addition to subsea hardware, JDR combines their products with lifecycle support through its Aftermarket Installation and Maintenance Services (AIMS) division.
The umbilicals will be manufactured and loaded out of JDR’s facility in Hartlepool. JDR’s Hartlepool plant supports simultaneous manufacture, enabling them to meet the critical delivery date of May 2014 required to meet the project objectives.
Commenting on the contract award, Andrew Norman, Chief Executive Officer of JDR, said: “This contract demonstrates JDR’s growing capability in subsea production umbilical design and manufacture. It is our second contract with ConocoPhillips and we are delighted to be contributing to the ongoing development of the JPDA.”

For further information contact:
Regan Burford
Marketing Manager, Oil & Gas
regan.burford@jdrcables.com
Tel: +1 281 240 6600 ext. 107

Jdr cables system Ltd

http://jdrglobal.com/

Acknowledgements: for introdution to Oil and Gas industry



Acknowledgements:
Univation in conjunction with The Robert Gordon University would like to thank
the following, for their help and contribution with setting up the Introduction
to Subsea Engineering Online Course:
Ingen www.ingen-ideas.com
FMC www.fmctechnologies.com
Shell www.shell.com
CSL www.csl-group.co.uk
Subsea UK www.subseauk.org
Vetco Gray www.vetcogray.com
Fugro www.fugro.co.uk
Technip www.technip.com/english/index.html
Sonsub www.sonsub.com
Canyon Offshore www.canyonrov.com
Oceaneering www.oceaneering.com
UK Offshore Operators Ass. www.oilandgas.org.uk/
Energy Info Administration www.eia.doe.gov
Society of Engineers www.spe.org/spe/jsp/homepage
Husky Energy www.huskyenergy.ca Health and
Safety Executive www.hse.gov.uk/offshore
Schlumberger Oilfield Glossary www.slb.com
Duco Ltd www.technip.com/entities/duco

Introduction to Subsea oil & Gas Industry


This topic provides an understanding of the issues involved in
achieving future development in the subsea industry


Section 1: Introduction
The current technology employed by the industry allows the use of subsea equipment to develop reserves in remote and environmentally sensitive areas. Even though the associated equipment used is innovative, the industry still strives to push the boundaries by developing further innovative solutions.

Section 2: Future for the Subsea Industry
Global growth of the subsea industry is unprecedented. The current market is growing and as shallow water and land reserves decrease the industry is looking towards deep water. Deep water generally refers to water depths of 500m or greater. Despite increased costs and risks, deep water developments will play an important role in future energy requirements.
Many demanding and technically challenging problems will be encountered in deep water as the equipment must be able to deal with changes in temperature and pressure.
Another critical aspect to deeper water developments will be control system requirements. Due to the increase in water depth the offset between the equipment on the seabed and the production facility will be larger. This poses a problem for passing power and communication signals over long distances. As a result this could usher in a change to alternative power and control systems. Subsea completions could be controlled with fibre optics or electricity instead of hydraulics and electro-hydraulics.
With respect to drilling, deepwater riser systems need to be built to cope with the weight and stress put on the long riser strings. High tech solutions like slender well drilling and production systems, as well as riser-less drilling are emerging. These solutions are likely to lower the associated cost of drilling.

Section 3: Current and Developing Technology
With the vast nature of the industry it would be impossible to capture all the aspects of developing technologies. For that reason, this section introduces a number of key subsea technologies which are either in place or in development. (This section is expanded upon in Module 4, Topic 8, Current and Developing Subsea Technology).
Key technologies include:
Subsea Multiphase Pumping
Usually all subsea productions will produce a mixture of oil, gas and water to surface facilities. By adding subsea booster pumps it is possible to increase the pressure energy and increase the production rate.
Subsea Electrical Submersible Pumps
ESP’s are electrically powered submersible centrifugal pumps lowered to the well. Electrical energy from the surface powers the pump via a cable linking the pump to the electrical power. As well as the typical function of aiding lift from wells, ESP’s are also used in water injection schemes and in producing horizontal wells.
Wet Gas Compression
Wet gas requires to be thoroughly dried before transportation. The operation is usually carried out by separators but if it is not possible to gain full removal of liquid this can go on to cause issues with further processing. To extract these reservoirs, subsea wet gas compressors are used. These compressors add pressure energy to unprocessed fluid and result in higher production rates.
Subsea Separation
As a fluid travels along a pipeline, from the well to the facilities, it exerts a back pressure on the wellhead, reducing the production rate. To achieve a higher production rate, subsea separation is used. The separators remove the gas from the liquid, send the gas to the facility and either inject the liquid or pump to an end point. This decreases the back pressure and achieves a higher production rate.
Multiphase Metering
It is difficult to model or predict multiphase flow. Various flow regimes are possible and are dependant on operating conditions, fluid properties, flowrate and orientation of the pipeline. The ability to measure unprocessed multiphase flow can lead to cost saving measures on the surface facilities.
Novel Wellhead Connectors
The wellhead provides all the anchorage for the casing and tubing strings of the well. It also provides access to the annulus between the casing and the production tubing.
ROV Technology
Remotely operated vehicles (ROVs) have been used in the oil and gas sector for many years now. An ROV consists of a power unit, thrusters for movement, control equipment, video equipment, etc. The electricity and hydraulic requirements are supplied to the vehicle by an umbilical cable. Their applications have expanded greatly as tasks that were originally carried out by divers are now completed by ROVs. These tasks include:
• Pipeline Inspection
• Platform Inspection
• Drilling Support
• Cable Laying/Burial
The development of ROVs has led to the increased use of fibre optics for data transfer as well as an increased use of un-tethered ROVs, called Autonomous Unmanned Vehicles (AUVs), which are not connected by umbilical cable.
Pipe-In-Pipe (Bundles)
A key challenge of many new subsea developments is maintaining the appropriate product temperature to avoid the formation of hydrates or wax which may lead to a complete shutdown. Pipe-in-Pipe systems allow a range of advanced and highly efficient insulation material to mitigate this risk. However, as a result of this efficient insulation, thermal expansion challenges are increased and techniques such as probabilistic analysis, upheaval buckling design, snake lay or cooling spools are employed and developed to mitigate the high expansion loads on the PIP system.
Flexible / Dynamic Riser
Flexible pipe / riser have been a successful solution for deep and shallow water environments due to its efficiency in coping with the most severe and complex loading conditions.
Development of flexible riser systems has naturally progressed in recent years due to the need for improvements in pressure ratings, diameters, depth of application and materials for sour service; however the costs remain high. Recent developments of flexible riser include;
Steel Catenary Risers
Hybrid Risers